MATH 521A: Abstract Algebra

Exam 1 Solutions

1. Let $p \in \mathbb{N}$ be irreducible, with $p>4$. Use the Division Algorithm to prove that p is of the form $6 k+1$ or $6 k+5$ for some integer k.
Apply the division algorithm to $p, 6$ to get integers k, r with $p=6 k+r$ and $0 \leq r<6$. If $r=0$, then $6 \mid p$, which is impossible as p is irreducible. If $r=2$, then $p=2(3 k+1)$, so $2 \mid p$, which is impossible as p is irreducible with $p>4$. If $r=3$, then $p=3(2 k+1)$, so $3 \mid p$, which is again impossible. Lastly, if $r=4$, then $p=2(3 k+2)$, so again $2 \mid p$, which is again impossible.
2. Use the extended Euclidean Algorithm to find $\operatorname{gcd}(119,175)$ and to find $x, y \in \mathbb{Z}$ with $119 x+175 y=\operatorname{gcd}(119,175)$.
Step 1: $175=1 \cdot 119+56$. Step 2: $119=2 \cdot 56+7$. Now $56=7 \cdot 8$, so we conclude that $\operatorname{gcd}(119,175)=7$. Step 3: $7=119-2 \cdot 56$. Step 4: $7=119-2 \cdot(175-1 \cdot 119)=$ $3 \cdot 119-2 \cdot 175$. Hence we have $x=3, y=-2$.
3. Apply the Miller-Rabin test to $n=63$ and $a=2$, and interpret the result.

We have $n-1=62=2^{1} \cdot 31$, so $s=1$ and $d=31$. Hence we calculate $2^{31}(\bmod 63)$. We can do this by hand: $2^{31}=\left(2^{6}\right)^{5} 2^{1}$, and $2^{6}=64 \equiv 1(\bmod 63)$. Hence $2^{31} \equiv 1^{5} \cdot 2=2$ $(\bmod 63)$. Since this is neither 1 nor 62 , we conclude that $a=2$ is a witness to n being composite.
4. Let $a, b \in \mathbb{N}$ with $\operatorname{gcd}(a, b)=1$. Without using the FTA, prove that $\operatorname{gcd}\left(a, b^{2}\right)=1$.

Direct Solution: Set $d=\operatorname{gcd}\left(a, b^{2}\right)$, and set $f=\operatorname{gcd}(d, b)$. We have $f \mid b$ and $f \mid a$ (since $f \mid d$ and $d \mid a)$, so $f \mid \operatorname{gcd}(a, b)$. But $\operatorname{gcd}(a, b)=1$, so $f=1$. Now, we apply Theorem 1.4 [which states that if $d \mid x \cdot y$ and $\operatorname{gcd}(d, x)=1$, then $d \mid y$] with $x=y=b$. Since $f=1$, we conclude that $d \mid b$. But also $d \mid a$, so $d \mid \operatorname{gcd}(a, b)$, so $d=1$.
Alternate Solution: Apply Theorem 1.2 to get integers u, v with $a u+b v=\operatorname{gcd}(a, b)=1$. We square both sides to get $1=a^{2} u^{2}+2 a u b v+b^{2} v^{2}=a\left(a^{2} u^{2}+2 u b v\right)+b^{2}\left(v^{2}\right)$. Since $a^{2} u^{2}+2 u b v, v^{2} \in \mathbb{Z}$, we have $1 \in \operatorname{PLC}\left(a, b^{2}\right)$. Since no positive integer is less than 1 , in fact 1 is the minimal element of $\operatorname{PLC}\left(a, b^{2}\right)$, which is $\operatorname{gcd}\left(a, b^{2}\right)$ by Thm 1.2 again.
5. Prove that $S=\mathbb{N} \cup\{\pi\}$ is well-ordered.

The usual order is NOT recommended, as that leads to many cases. Recommended is an order which puts π at one end, like $\pi \prec 1 \prec 2 \prec 3 \prec \cdots$. Now, let $T \subseteq S$. If T contains π, then π is the minimal element of T by the way we built the order \prec. If T does not contain π, then $T \subseteq \mathbb{N}$, and \prec agrees with the usual order $<$ on \mathbb{N}, so T has a minimal element since \mathbb{N} is well-ordered by $<$.
6. Prove the following variant of the division algorithm: Let a, b be integers with $b>0$. then there exist (not necessarily unique) integers q, r such that $a=b q+r$ and $-1 \leq$ $r \leq b-2$.
Set $S=\{a-b x: x \in \mathbb{Z}, a-b x \geq-1\}$. Step 1: We prove $S \neq \emptyset$. Take $x=-|a|$, and calculate $a-b x=a+b|a| \geq 0$. Hence $a-b x \in S$. Step 2: $S \subseteq\{-1\} \cup \mathbb{N}_{0}$, which we proved was well-ordered (by the usual order) in the first homework. Hence, there is some minimal element r in S. Since $r \in S$, we have $r \geq-1$. Step 3: We prove that $r \leq b-2$. We argue by contradiction; if instead $r \geq b-1$, then $r-b=a-b(q+1)$ would be a smaller element of S, which is impossible.
7. Let $a, b, c, d \in \mathbb{Z}$ with $a|c, b| c$, and $\operatorname{gcd}(a, b)=d$. Without using the FTA, prove that $a b \mid c d$.

Direct Solution: For some integers a^{\prime}, b^{\prime}, we have $a=d a^{\prime}, b=d b^{\prime}$, since $d=\operatorname{gcd}(a, b)$. In fact $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$ (else d would be larger). Since $a \mid c$, there is some integer f with $c=a f=d a^{\prime} f$. Since $b \mid c$, there is some integer g with $d b^{\prime} g=b g=d a^{\prime} f$. Cancelling, we get $b^{\prime} g=a^{\prime} f$. So $b^{\prime} \mid a^{\prime} f$, but $\operatorname{gcd}\left(b^{\prime}, a^{\prime}\right)=1$, so by Theorem 1.4 we must have $b^{\prime} \mid f$. Hence there is some integer k with $f=b^{\prime} k$. We now have $c d=(a f) d=a\left(b^{\prime} k d\right)=(a b) k$, so $a b \mid c d$.
Alternate Solution: Apply Theorem 1.2 to get integers u, v with $a u+b v=\operatorname{gcd}(a, b)=d$. Now, since $a \mid c$, there is some integer e with $c=a e$. Since $b \mid c$, there is some integer f with $c=b f$. We now multiply $a u+b v=d$ on both sides by c to get $c a u+c b v=c d$, then substitute twice to get $(b f) a u+(a e) b v=c d$. Rearranging, we get $a b(f u+e v)=c d$. Since $f u+e v \in \mathbb{Z}$, in fact $a b \mid c d$.
8. Let $a, b, c \in \mathbb{Z}$ with $a b=c^{2}$ and $\operatorname{gcd}(a, b)=1$. Prove that a, b are perfect squares.

Apply the FTA. Let p_{1}, \ldots, p_{k} be all the positive primes dividing any of a, b, c. We have $a_{i}, b_{i}, c_{i} \in \mathbb{N}_{0}$ with $a=\prod p_{i}^{a_{i}}, b=\prod p_{i}^{b_{i}}, c=\prod p_{i}^{c_{i}}$, where all the products are from $i=1$ to k. The relationship $a b=c^{2}$ gives us k equations: $a_{i}+b_{i}=2 c_{i}$, for $1 \leq i \leq k$. Since $\operatorname{gcd}(a, b)=1$, then for each $i \in[1, k]$, we must have either $a_{i}=0$ or $b_{i}=0$ (else p_{i} would be a common divisor of a, b). Hence, for each $i \in[1, k]$, either $a_{i}=2 c_{i}$ or $b_{i}=2 c_{i}$. Hence all of the exponents a_{i} and b_{i} are even, which means that a, b are both perfect squares.

