
MATH 521A: Abstract Algebra
Exam 1 Solutions

1. Let p ∈ N be irreducible, with p > 4. Use the Division Algorithm to prove that p is of
the form 6k + 1 or 6k + 5 for some integer k.

Apply the division algorithm to p, 6 to get integers k, r with p = 6k+ r and 0 ≤ r < 6.
If r = 0, then 6|p, which is impossible as p is irreducible. If r = 2, then p = 2(3k + 1),
so 2|p, which is impossible as p is irreducible with p > 4. If r = 3, then p = 3(2k + 1),
so 3|p, which is again impossible. Lastly, if r = 4, then p = 2(3k + 2), so again 2|p,
which is again impossible.

2. Use the extended Euclidean Algorithm to find gcd(119, 175) and to find x, y ∈ Z with
119x+ 175y = gcd(119, 175).

Step 1: 175 = 1 · 119 + 56. Step 2: 119 = 2 · 56 + 7. Now 56 = 7 · 8, so we conclude
that gcd(119, 175) = 7. Step 3: 7 = 119− 2 · 56. Step 4: 7 = 119− 2 · (175− 1 · 119) =
3 · 119− 2 · 175. Hence we have x = 3, y = −2.

3. Apply the Miller-Rabin test to n = 63 and a = 2, and interpret the result.

We have n−1 = 62 = 21·31, so s = 1 and d = 31. Hence we calculate 231 (mod 63). We
can do this by hand: 231 = (26)521, and 26 = 64 ≡ 1 (mod 63). Hence 231 ≡ 15 · 2 = 2
(mod 63). Since this is neither 1 nor 62, we conclude that a = 2 is a witness to n being
composite.

4. Let a, b ∈ N with gcd(a, b) = 1. Without using the FTA, prove that gcd(a, b2) = 1.

Direct Solution: Set d = gcd(a, b2), and set f = gcd(d, b). We have f |b and f |a (since
f |d and d|a), so f | gcd(a, b). But gcd(a, b) = 1, so f = 1. Now, we apply Theorem 1.4
[which states that if d|x · y and gcd(d, x) = 1, then d|y] with x = y = b. Since f = 1,
we conclude that d|b. But also d|a, so d| gcd(a, b), so d = 1.

Alternate Solution: Apply Theorem 1.2 to get integers u, v with au+bv = gcd(a, b) = 1.
We square both sides to get 1 = a2u2 + 2aubv + b2v2 = a(a2u2 + 2ubv) + b2(v2). Since
a2u2 + 2ubv, v2 ∈ Z, we have 1 ∈PLC(a, b2). Since no positive integer is less than 1, in
fact 1 is the minimal element of PLC(a, b2), which is gcd(a, b2) by Thm 1.2 again.

5. Prove that S = N ∪ {π} is well-ordered.

The usual order is NOT recommended, as that leads to many cases. Recommended is
an order which puts π at one end, like π ≺ 1 ≺ 2 ≺ 3 ≺ · · · . Now, let T ⊆ S. If T
contains π, then π is the minimal element of T by the way we built the order ≺. If T
does not contain π, then T ⊆ N, and ≺ agrees with the usual order < on N, so T has
a minimal element since N is well-ordered by <.



6. Prove the following variant of the division algorithm: Let a, b be integers with b > 0.
then there exist (not necessarily unique) integers q, r such that a = bq + r and −1 ≤
r ≤ b− 2.

Set S = {a− bx : x ∈ Z, a− bx ≥ −1}. Step 1: We prove S 6= ∅. Take x = −|a|, and
calculate a − bx = a + b|a| ≥ 0. Hence a − bx ∈ S. Step 2: S ⊆ {−1} ∪ N0, which
we proved was well-ordered (by the usual order) in the first homework. Hence, there
is some minimal element r in S. Since r ∈ S, we have r ≥ −1. Step 3: We prove that
r ≤ b − 2. We argue by contradiction; if instead r ≥ b − 1, then r − b = a − b(q + 1)
would be a smaller element of S, which is impossible.

7. Let a, b, c, d ∈ Z with a|c, b|c, and gcd(a, b) = d. Without using the FTA, prove that
ab|cd.

Direct Solution: For some integers a′, b′, we have a = da′, b = db′, since d = gcd(a, b).
In fact gcd(a′, b′) = 1 (else d would be larger). Since a|c, there is some integer f with
c = af = da′f . Since b|c, there is some integer g with db′g = bg = da′f . Cancelling, we
get b′g = a′f . So b′|a′f , but gcd(b′, a′) = 1, so by Theorem 1.4 we must have b′|f . Hence
there is some integer k with f = b′k. We now have cd = (af)d = a(b′kd) = (ab)k, so
ab|cd.

Alternate Solution: Apply Theorem 1.2 to get integers u, v with au+bv = gcd(a, b) = d.
Now, since a|c, there is some integer e with c = ae. Since b|c, there is some integer f
with c = bf . We now multiply au+bv = d on both sides by c to get cau+cbv = cd, then
substitute twice to get (bf)au + (ae)bv = cd. Rearranging, we get ab(fu + ev) = cd.
Since fu+ ev ∈ Z, in fact ab|cd.

8. Let a, b, c ∈ Z with ab = c2 and gcd(a, b) = 1. Prove that a, b are perfect squares.

Apply the FTA. Let p1, . . . , pk be all the positive primes dividing any of a, b, c. We
have ai, bi, ci ∈ N0 with a =

∏
paii , b =

∏
pbii , c =

∏
pcii , where all the products are

from i = 1 to k. The relationship ab = c2 gives us k equations: ai + bi = 2ci, for
1 ≤ i ≤ k. Since gcd(a, b) = 1, then for each i ∈ [1, k], we must have either ai = 0 or
bi = 0 (else pi would be a common divisor of a, b). Hence, for each i ∈ [1, k], either
ai = 2ci or bi = 2ci. Hence all of the exponents ai and bi are even, which means that
a, b are both perfect squares.


