MATH 521A: Abstract Algebra Exam 1 Solutions

1. Let $p \in \mathbb{N}$ be irreducible, with p > 4. Use the Division Algorithm to prove that p is of the form 6k + 1 or 6k + 5 for some integer k.

Apply the division algorithm to p, 6 to get integers k, r with p = 6k + r and $0 \le r < 6$. If r = 0, then 6|p, which is impossible as p is irreducible. If r = 2, then p = 2(3k + 1), so 2|p, which is impossible as p is irreducible with p > 4. If r = 3, then p = 3(2k + 1), so 3|p, which is again impossible. Lastly, if r = 4, then p = 2(3k + 2), so again 2|p, which is again impossible.

2. Use the extended Euclidean Algorithm to find gcd(119, 175) and to find $x, y \in \mathbb{Z}$ with 119x + 175y = gcd(119, 175).

Step 1: $175 = 1 \cdot 119 + 56$. Step 2: $119 = 2 \cdot 56 + 7$. Now $56 = 7 \cdot 8$, so we conclude that gcd(119, 175) = 7. Step 3: $7 = 119 - 2 \cdot 56$. Step 4: $7 = 119 - 2 \cdot (175 - 1 \cdot 119) = 3 \cdot 119 - 2 \cdot 175$. Hence we have x = 3, y = -2.

3. Apply the Miller-Rabin test to n = 63 and a = 2, and interpret the result.

We have $n-1 = 62 = 2^1 \cdot 31$, so s = 1 and d = 31. Hence we calculate $2^{31} \pmod{63}$. We can do this by hand: $2^{31} = (2^6)^5 2^1$, and $2^6 = 64 \equiv 1 \pmod{63}$. Hence $2^{31} \equiv 1^5 \cdot 2 = 2 \pmod{63}$. Since this is neither 1 nor 62, we conclude that a = 2 is a witness to n being composite.

4. Let $a, b \in \mathbb{N}$ with gcd(a, b) = 1. Without using the FTA, prove that $gcd(a, b^2) = 1$.

Direct Solution: Set $d = \gcd(a, b^2)$, and set $f = \gcd(d, b)$. We have f|b and f|a (since f|d and d|a), so $f|\gcd(a, b)$. But $\gcd(a, b) = 1$, so f = 1. Now, we apply Theorem 1.4 [which states that if $d|x \cdot y$ and $\gcd(d, x) = 1$, then d|y] with x = y = b. Since f = 1, we conclude that d|b. But also d|a, so $d|\gcd(a, b)$, so d = 1.

Alternate Solution: Apply Theorem 1.2 to get integers u, v with au+bv = gcd(a, b) = 1. We square both sides to get $1 = a^2u^2 + 2aubv + b^2v^2 = a(a^2u^2 + 2ubv) + b^2(v^2)$. Since $a^2u^2 + 2ubv, v^2 \in \mathbb{Z}$, we have $1 \in \text{PLC}(a, b^2)$. Since no positive integer is less than 1, in fact 1 is the minimal element of $\text{PLC}(a, b^2)$, which is $\text{gcd}(a, b^2)$ by Thm 1.2 again.

5. Prove that $S = \mathbb{N} \cup \{\pi\}$ is well-ordered.

The usual order is NOT recommended, as that leads to many cases. Recommended is an order which puts π at one end, like $\pi \prec 1 \prec 2 \prec 3 \prec \cdots$. Now, let $T \subseteq S$. If Tcontains π , then π is the minimal element of T by the way we built the order \prec . If Tdoes not contain π , then $T \subseteq \mathbb{N}$, and \prec agrees with the usual order < on \mathbb{N} , so T has a minimal element since \mathbb{N} is well-ordered by <. 6. Prove the following variant of the division algorithm: Let a, b be integers with b > 0. then there exist (not necessarily unique) integers q, r such that a = bq + r and $-1 \le r \le b-2$.

Set $S = \{a - bx : x \in \mathbb{Z}, a - bx \ge -1\}$. Step 1: We prove $S \ne \emptyset$. Take x = -|a|, and calculate $a - bx = a + b|a| \ge 0$. Hence $a - bx \in S$. Step 2: $S \subseteq \{-1\} \cup \mathbb{N}_0$, which we proved was well-ordered (by the usual order) in the first homework. Hence, there is some minimal element r in S. Since $r \in S$, we have $r \ge -1$. Step 3: We prove that $r \le b - 2$. We argue by contradiction; if instead $r \ge b - 1$, then r - b = a - b(q + 1) would be a smaller element of S, which is impossible.

7. Let $a, b, c, d \in \mathbb{Z}$ with a|c, b|c, and gcd(a, b) = d. Without using the FTA, prove that ab|cd.

Direct Solution: For some integers a', b', we have a = da', b = db', since $d = \gcd(a, b)$. In fact $\gcd(a', b') = 1$ (else *d* would be larger). Since a|c, there is some integer *f* with c = af = da'f. Since b|c, there is some integer *g* with db'g = bg = da'f. Cancelling, we get b'g = a'f. So b'|a'f, but $\gcd(b', a') = 1$, so by Theorem 1.4 we must have b'|f. Hence there is some integer *k* with f = b'k. We now have cd = (af)d = a(b'kd) = (ab)k, so ab|cd.

Alternate Solution: Apply Theorem 1.2 to get integers u, v with $au+bv = \gcd(a, b) = d$. Now, since a|c, there is some integer e with c = ae. Since b|c, there is some integer f with c = bf. We now multiply au+bv = d on both sides by c to get cau+cbv = cd, then substitute twice to get (bf)au + (ae)bv = cd. Rearranging, we get ab(fu + ev) = cd. Since $fu + ev \in \mathbb{Z}$, in fact ab|cd.

8. Let $a, b, c \in \mathbb{Z}$ with $ab = c^2$ and gcd(a, b) = 1. Prove that a, b are perfect squares.

Apply the FTA. Let p_1, \ldots, p_k be all the positive primes dividing any of a, b, c. We have $a_i, b_i, c_i \in \mathbb{N}_0$ with $a = \prod p_i^{a_i}, b = \prod p_i^{b_i}, c = \prod p_i^{c_i}$, where all the products are from i = 1 to k. The relationship $ab = c^2$ gives us k equations: $a_i + b_i = 2c_i$, for $1 \leq i \leq k$. Since gcd(a, b) = 1, then for each $i \in [1, k]$, we must have either $a_i = 0$ or $b_i = 0$ (else p_i would be a common divisor of a, b). Hence, for each $i \in [1, k]$, either $a_i = 2c_i$ or $b_i = 2c_i$. Hence all of the exponents a_i and b_i are even, which means that a, b are both perfect squares.